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Let D be a link diagram and T a 4-tangle. By replacing each crossing of D by T , 
we get a new diagram D ⊗ T , called a link diagram with local symmetry or tensor 
product of D and T . In this paper, we will study polynomial invariants of the link 
diagram D ⊗ T with local symmetry in terms of D and T , and as an application, 
we will study the adequacy of D ⊗ T .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let D be a diagram of a link L. A state s of D is an assignment of characters A and B to each crossing 
of D as Fig. 1. Given a state s of D, we can splice each vertex by giving either A-split or B-split, see Fig. 1. 
Clearly, there are 2c(D) different states where c(D) is the number of crossings in D.

For a given state s of D, let a(s) and b(s) denote the numbers of the character A and the character B which 
are assigned to crossings of D respectively, and let |s| denote the number of loops of the resulting diagram 
obtained from D by splicing all crossings of D according to its state. The Kauffman bracket polynomial
< D >∈ Z[A, B, d] of the link diagram D is given by

< D >=
∑
s

Aa(s)Bb(s)d|s|−1.

It is well-known that the Kauffman bracket polynomial < D > is a regular isotopy invariant if B = A−1

and d = −A2 −A−2, and that

VL(A) = (−A)−w(D) < D >
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Fig. 1. A-split and B-split.

Fig. 2. D ⊗ T .

Fig. 3. The skein relation.

is the Jones polynomial of L, which is an isotopy invariant of L. Here w(D) denotes the writhe of D.
Let D be a link diagram and T a 4-tangle. By replacing each crossing of D by T as in Fig. 2, we get a 

new diagram D ⊗ T , called a link diagram with local symmetry or tensor product of D and T .

Example 1. Let D be the following diagram of the trefoil knot and let T be the diagram of the rational 
tangle C(2, −3, 2). Then tensor product D ⊗ T of D and T is the right diagram of the following figure.

In this paper, we will study the Kauffman bracket polynomial < D ⊗ T > and the adequacy of the link 
diagram D ⊗ T with local symmetry.

2. Kauffman bracket polynomial of a link diagram with local symmetry

The bracket polynomial can be characterized by the skein module. The skein module E(A, B, d) is the 
complex vector space generated by all link diagrams with the following relations:

(i) ambient isotopy in the plane;
(ii) D ∪© = d ·D, where D is an arbitrary link diagram and © is a simple closed curve bounding a disk 

in the complement of D;
(iii) The skein relation for Kauffman bracket polynomial (see Fig. 3).
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Fig. 4. Generators of E4(A,B, d).

From the relations (ii) and (iii), we know that E(A, B, d) is an 1-dimensional vector space generated 
by the empty diagram. Each link diagram D represents an elements [D], called the skein class of D, in 
E(A, B, d). The Kauffman bracket polynomial is

< D >= d−1[D].

Let E4(A, B, d) be the complex vector space generated by all 4-tangles quotiented by relations (i), (ii) 
and (iii) in the definition of E(A, B, d). The skein module E4(A, B, d) is generated by two 4-tangles U1 and 
U2 in Fig. 4.

Since the diagram D⊗ T is obtained by replacing each crossing of D by T as in Fig. 2, D⊗U1 = sA(D)
and D⊗ U2 = sB(D), where sA = sA(D) and sB = sB(D) are the extreme states which assign A and B to 
all crossings of D, respectively.

Theorem 2. Let D be a diagram of a link and T a 4-tangle. Let < D > (A, B, d) denote the Kauffman bracket 
polynomial of D. Suppose that T = f(A)U1 + g(A)U2 in E4(A) = E4(A, B, d), B = A−1, d = −A2 − A−2. 
Then

< D ⊗ T >=< D > (f(A), g(A),−A2 −A−2).

Proof. We will start the proof by recalling the skein resolution tree for Kauffman bracket polynomial. To 
calculate < D >, we first choose any crossing c of D, which is the upmost crossing in the skein resolution 
tree of D, and then, apply the skein relation to c to obtain two diagrams at the next level in the skein 
resolution tree of D. At each diagram D′ of the next level, choose any crossing c′ of D′ and apply the 
skein relation to c′ to obtain four diagrams at the next level in the skein resolution tree of D. By repeating 
this steps, one can have a skein tree with 2c(D) branches. At the end of each branch of the skein tree, the 
resulting diagram, called the branch-end diagram, has no crossings For a branch-end diagram s, let a(s)
and b(s) denote the numbers of A’s and B’s which are assigned on the corresponding branch, respectively. 
Then

< D >=
∑

s:branch-end
< D; s >

where < D; s >= Aa(s)Bb(s)d|s|−1 for each branch-end diagram s.
Now consider the calculation of the Kauffman bracket polynomial < D⊗T >. One can construct a skein 

resolution tree for the tangle T by the same method for D. Notice that the resulting branch-end diagram 
of the skein tree for T consists of either U1 or U2 in Fig. 4 and a number of disjoint circles. If we replace 
each disjoint circle with −A2 − A−2, then the branch-end diagram of the resulting skein tree is either U1
or U2. Indeed, f(A) and g(A) in the expression T = f(A)U1 + g(A)U2 are obtained by this process when B
is replaced with A−1.

Now, choose the tangle T in D ⊗ T whose corresponding crossing in D is c, the upmost crossing in the 
skein resolution tree of D. By applying the skein relation to all crossing of T to get a skein resolution tree 
of T , one can obtain the top level of the skein resolution tree of D ⊗ T at the right of the Fig. 5. By the 
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Fig. 5. The skein resolution trees of D and D ⊗ T .

Fig. 6. D: figure-8 knot, T = C(2,−3, 2).

same way, one can obtain the next level of the skein resolution tree of D ⊗ T by applying skein resolution 
tree to T whose location is the crossing c′ of the next level diagram D′. By using this step in exactly the 
same order of the skein resolution tree of D, one can get the skein resolution tree of D ⊗ T .

Notice that the branches of two skein trees are exactly the same, but the values assigned at each step are 
different; one is A and B and the other f(A) and g(A). Hence if < D; s >= Aa(s)Bb(s)d|s|−1 for a branch s
of the skein tree in D, the value < D ⊗ T ; s > for the corresponding branch of the skein tree in D ⊗ T is 
< D ⊗ T ; s >= f(A)a(s)g(A)b(s)d|s|−1. Hence

< D ⊗ T >=
∑

s:branch
< D ⊗ T ; s >=

∑
s:branch

f(A)a(s)g(A)b(s)d|s|−1.

Example 3. The right diagram of Fig. 6 is the tensor product D ⊗ T of the figure-eight knot D and the 
rational tangle T = C(2, −3, 2). One can see that, by the direct calculation,

< D > = 5A2B2 + 4A3Bd + 4AB3d + A4d2 + A2B2d2 + B4d2 and

C(2,−3, 2) = ( 1
A

− 2A3 + 2A7 − 2A11 + A15)U1 + ( 1
A3 − 2A + A5 −A9)U2.

Hence, by the previous theorem, the Kauffman bracket polynomial < D ⊗ T > of D ⊗ T is

5( 1
A

− 2A3 + 2A7 − 2A11 + A15)2( 1
A3 − 2A + A5 −A9)2

+ 4( 1
A

− 2A3 + 2A7 − 2A11 + A15)3( 1
A3 − 2A + A5 −A9)(−A2 −A−2)

+ 4( 1 − 2A3 + 2A7 − 2A11 + A15)( 1 − 2A + A5 −A9)3(−A2 −A−2)

A A3
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+ ( 1
A

− 2A3 + 2A7 − 2A11 + A15)4(−A2 −A−2)2

+ ( 1
A

− 2A3 + 2A7 − 2A11 + A15)2( 1
A3 − 2A + A5 −A9)2(−A2 −A−2)2

+ ( 1
A3 − 2A + A5 −A9)4(−A2 −A−2)2

= 1
A16 − 9

A12 + 37
A8 − 99

A4 + 207 − 365A4 + 557A8 − 754A12 + 916A16 − 1006A20

+ 1006A24 − 913A28 + 755A32 − 563A36 + 380A40 − 228A44 + 121A48 − 55A52

+ 21A56 − 6A60 + A64

3. Application: the adequacy of D ⊗ T

In 1987, L.H. Kauffamn [2] showed that the breadth β(< L >) of the Kauffman bracket polynomial < L >, 
which is the difference between the maximal degree and the minimal degree of < L >, is bounded from 
above by 4c(D) for any diagram D of L with c(D) crossings. Furthermore, if D is reduced and alternating, 
the equality holds. In fact, max deg < L >≤ c(D) + 2(|sA| − 1) and min deg < L >≥ −c(D) − 2(|sA| − 1)
and hence β(< L >) ≤ 2c(D) + 2(|sA| + |sB | − 2), where sA = sA(D) and sB = sB(D) are the extreme 
states which assign A and B to all crossings of D, respectively.

In 1988, W.B.R. Lickorish and M.B. Thistlethwaite [3] introduced +adequacy and −adequacy of link 
diagrams, which are sufficient conditions for equality in the above inequalities. A diagram D is said to be 
+adequate if |sA| > |s| for any state s whose only one crossing is assigned with a B-split. Similarly, D is said 
to be −adequate if |sB | > |s| for any state s whose only one crossing is assigned with a A-split. A diagram D
is said to be adequate if it is both +adequate and −adequate. A link L is said to be adequate if it admits an 
adequate diagram. Any reduced and alternating diagram of a link is adequate. Note that if D is +adequate, 
max deg < D >= c(D) +2(|sA|−1), and if D is −adequate, min deg < D >= −c(D) −2(|sA|−1), and hence 
if D is adequate, then β(< D >) = 2c(D) +2(|sA|+ |sB |−2). By using these results, M.B. Thistlethwaite [5]
showed that every adequate diagram is a minimal diagram. The adequacy of a diagram can be generalized 
for a tangle similarly.

Definition 4. A diagram T of a tangle is said to be +adequate if |sA| > |s| for any state s whose only one 
crossing is assigned with a B-split. Similarly, T is said to be −adequate if |sB | > |s| for any state s whose 
only one crossing is assigned with a A-split. T is said to be adequate if it is both +adequate and −adequate. 
A 4-tangle is said to be adequate if it admits an adequate diagram. Here |s| denote sum of the number of 
loops and the number of arcs in the resulting tangle diagram obtained from T by splicing all crossings of D
according to the state s.

Theorem 5. Let D be a diagram of a link and T a diagram of a 4-tangle.

1. If D is +adequate and if T is an +adequate, then D ⊗ T is also +adequate.
2. If D is −adequate and if T is an −adequate, then D ⊗ T is also −adequate.
3. If D is adequate and if T is an adequate, then D ⊗ T is also adequate.

Proof. (1) Since the extreme state sA(D) of D is obtained from D by applying A-splice at all crossings, 
sA(D) is exactly the same with the diagram D⊗U1. Similarly, sB(D) is exactly the same with the diagram 
D ⊗ U2. Here U1 and U2 are the generators of E4(A, B, d) in Fig. 4. Since sA(T ) and sB(T ) are 4-tangles 
with no crossings, they are either of the form U1 with a number of loops or of the form U2 with a number 
of loops, see Fig. 7.
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Fig. 7. Shapes of sA(T ) and sB(T ).

Note that, by applying A-splices to all crossings of D ⊗ T , each tangle of D ⊗ T is changed into sA(T ). 
Since D ⊗ T has c(D) tangles, sA(D ⊗ T ) is D ⊗ U1 with kc(D) loops if sA(T ) consists of U1 and k loops. 
Similarly, sB(D ⊗ T ) is D ⊗ U2 with k′c(D) loops if sB(T ) consists of U2 and k′ loops.

To check the +adequacy of D ⊗ T , it suffice to show that |sA(D ⊗ T )| > |s|, where s is any state whose 
only one crossing, say c, is assigned with B-splice.

Since all crossings of D ⊗ T are located in tangles, there is a tangle T of D ⊗ T on which c is lying. In 
the state s(T ) of T , let l1 and l2 denote the two components of s(T ) on which c is appeared. If l1 and l2 are 
both loops, then they are different components of s(T ). For, if l1 and l2 are the same components, then by 
applying A-splice at c, l1 and l2 are appeared in the same component. Since the resulting state obtained by 
A-splice at c is the extreme state sA(T ), |s(T )| = |sA(T )|+1, because s(T ) is the state of T whose the only 
one crossing with B-splice is c. This is a contradiction that T is +adequate. Indeed, |s(T )| = |sA(T )| − 1. 
Since sA(D ⊗ T ) and s(D ⊗ T ) are the same except l1 and l2, we have |s(D ⊗ T )| = |sA(D ⊗ T )| − 1.

If one of l1 and l2, say l1, is a loop and the other is an arc, by applying A-splice at c, l1 and l2 are resulted 
in one arc, and hence |s(D ⊗ T )| = |sA(D ⊗ T )| − 1. Finally, suppose that both of l1 and l2 are arcs. If 
all loop components of s(D ⊗ T ) and sA(D ⊗ T ), then the resulting states coincide with s(D) and sA(D), 
respectively. Since D is +adequate so that |s(D)| = |sA(D)| − 1, we have |s(D ⊗ T )| = |sA(D ⊗ T )| − 1.

The proof of the second is similar with the first and the last result comes from the others.

Corollary 6. Suppose that D is +adequate.

1. If D is +adequate and if max deg f(A) ≥ max deg g(A), then max deg < D ⊗ T >= n max deg f(A) +
2 |sA| − 2.

2. If D is +adequate and if max deg f(A) ≤ max deg g(A), then max deg < D ⊗ T >= n max deg g(A) +
2 |sA| − 2.

3. If D is −adequate and if min deg f(A) ≤ min deg g(A), then min deg < D ⊗ T >= n min deg g(A) −
2 |sB | + 2.

4. If D is −adequate and if min deg f(A) ≤ min deg g(A), then min deg < D ⊗ T >= n min deg f(A) −
2 |sB | + 2.

Proof. We can get the results from the definition of adequacies and the equation;

< D ⊗ T >=
∑

s:branch
f(A)a(s)g(A)b(s)d|s|−1.

4. Homfly polynomial of a link diagram with local symmetry

The Homfly polynomial PL(v, z) of an oriented link L is defined by the following three axioms [1,4]:

(i) PL(v, z) is invariant under ambient isotopy of L.
(ii) If L is the trivial knot, then PL(v, z) = 1.
(iii) The skein relation for Homfly polynomial.
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Fig. 8. The skein relation.

Fig. 9. Tensor product D ⊗ T .

Fig. 10. n-twist.

Fig. 11. Basic 4-tangles for the oriented case.

v−1P (L+) − vP (L−) = zP (L0)

where L+, L− and L0 are the oriented link diagrams in Fig. 8, respectively.

Note that P (L1 � L2) = δP (L1)P (L2), where δ = v−1−v
z .

If D is a positive link diagram and if T is an oriented 4-tangle, then, by replacing each crossing with T
so that the orientation of D and T are compatible, one can define the tensor product D⊗ T of D and T as 
in the Fig. 9.

In particular, if Tn is the diagram of n-twist in Fig. 10, Tn ⊗ T is a periodic link whose factor link is 
T1 ⊗ T .

Notice that any oriented 4-tangle T can be presented as a linear combination of the two basic 4-tangles 
V1 and V2 in Fig. 11 by applying suitable skein relation if needed.

Theorem 7. Let Tn ⊗ T denote the periodic link described above. If T = f(v, z)V1 + g(v, z)V2, then

PTn⊗T =
n∑

i=0
f(v, z)n−ig(v, z)i

∑
Di

PDi
,

where Di runs all the possible diagrams obtained from Tn by splicing i crossings.
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Proof. By using the equation T = f(v, z)V1 + g(v, z)V2, one can replace each tangle of Tn ⊗ T with either 
f(v, z)V1 or g(v, z)V2.

Corollary 8. Let Tn ⊗ T denote the periodic link described above. Suppose that T = f(v, z)V1 + g(v, z)V2. If 
n = pr for a prime number p and r ≥ 1, then

PTn⊗T = f(v, z)nPTn
+ v−1 − v

z
g(v, z)n (mod p).

Proof. Suppose that n = p is a prime. By the above theorem,

PTn⊗T =
n∑

i=0
f(v, z)n−ig(v, z)i

∑
Di

PDi
,

where Di runs all the possible diagrams obtained from Tn by splicing i crossings. Since n is prime, all 
diagrams obtained from Tn by splicing i crossings are ambient isotopic. Hence

PTn⊗T =
n∑

i=0

(
n

i

)
f(v, z)n−ig(v, z)iPDi

= f(v, z)nPD0 + g(v, z)nPDn
(mod p)

= f(v, z)nPTn
+ v−1 − v

z
g(v, z)n(mod p).

The last equality comes from the fact that D0 = Tn and Dn is the trivial link with two components.
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